Testing Autonomous Systems for Deep Space Exploration

Kirk Reinholtz and Keyur Patel
Jet 1 ropulsion 1.aborat ory?
California Institute of ‘Techmology
4800 Qak Grove 1riveM s 30:3-310
Pasadena, CA 91109 USA
first.last@jpl.nasa.gov

October 1 o, 1997
(revised December 2, 1907 Version 1. 1 2)

ABSTRACT

NASA is movinginto ancra of increasing spacecraft au-
tonomy. 1 lowever, before autonomy Cal] be routinely
utilized, we must provide techniques for providing as-
surance (list the system will perform correctly inflight.
We describe why autonomous systems require ad vanced
verification techmiques, and offer some managernent and
technical techniques for addressing the differences.

Autonomous ~oal-drive.n spacecraft require advances in
verification techniques because optimization (e.g. plan-
ning and scheduling) algorithims are at the core of much
of autonomy. It is the nature of such algorithms that, over
much of the input space an intuitively “small” change in
theinput results in a correspondingly “small” change in
the out put: This type of response Ly pically leads one t o
conclude, quite reasonably, that il the two respanses are
correct, those responses “bet weent” themn will probably
be correct. 1 lowever, there are certainregions inthe in-
put space where a “sinall” change in the input will result
in a radically different output: One is not so inclined to
conclude that all responses in these t ransit ion zones are
likely to be correct.

We believe, for two reasons, that these transition zones
arc onc place where autonomous systens are likely to
fail. First, boundary conditions, oftenr a rich source of
faults, arc highly exercised in the transition zones, and
80 increase the likelihood of Taults. Sceond, within the
transition zone the algorithm outputs arc likely to ap-
pear unusual, and, since the oulputs of t he algorithin
become inpuis to the ramainder of the systern, the whole
system is probably pushed outside of its nominal usage
profile: historically shown to be another good source o f
faults.

We close with a discussion of risk managcinent. A -
tonomous systeins have many well-kll(wll managenent
risk factors. Risk management and quality concernis
nust be pervasive, throughout all team members and
the whole life-cycle of the project.

*The work described was performed at the Jet Propulsion Labo-
ratory, California Institute of Technology under contract with the
National Aecronautics and Space Administration. Submitted to
1151 Acrospace Conference Procecdings(papor 035), Aspen, CO,
March 21-28, 1998,

TABLE OF CONTENTS

1 INTRODUCTION

2 TRADITIONAL TESTING

3 T ESTING AUTONOMOUS SOFI'WARE
4 TFORMAL SPECIFICATIONS

5 RISK MANAG EMENT

6 SUMMARY

1 INTRODUCTION

NASA [I]and other agencies|2)are imoving into anera of
increased spacecraft autonomy — a naturaloutcome of a
desire to reduce the cost of science dat a combined with
the inpact of light-tiime communication delays and the
availability of ever more powerful computers. Autonomy
has the potential to decrease the cost of spacecraft op-
erat ions, improve reliability, and provide increased sci-
cnce product volume and quality. However, before these
things can oceur, we must provide a comnpelling argu-
ment that we earl deliver a flight-quality product.

Traditional spacecraft flight software testing at JPL ba-
sically demonstrates that each command works correctly,
that cambinations of commands that are likely to be used
toget her during the mission work properly together, and
that all interfaces are operating correctly. This has been
appropriat e and ¢ [fective, because the spacecralt systems
have been designed to minimize the influence of environ-
mental factors 011 the exccution of low-level commmands.

However, al most by definition, as the degree of autor -
oty increases, the sensitivity to the environment also in-
creases. Sinee the system is sensitive to the environment,,
and t he act ual mission environment can’t be predicted
with suflicient accuracy, one must explore the behavior
of the system over a range of plausible environments in
order to demonstrate the robustitess of the system,

We propose a four-pronged mitigation plan. Iirst, for -
mal specifications of the correct behavior of the sys-
tem must be developed, along with tools to validate an
executing system against its specification, so that even
minor departures can be detected. Otherwise, it is likely
that “minor” divergences will not be detected until they
become major divergences, perhaps during the mission.

Next, locate thetransition zones, via a combination of
analysis and scarch, then explore cachin detailforin -
correct behavior. Finally, manage the risk over the
whole life-cycle.

A forimal specification, against which an exceution of the
systemcanbe verified inawhite-box manner, is crucial.
There arc a great many details to be verified, many of
which will be neglected if the verification is done manu-
ally. White-box testing increases test efliciency, because
cven faults that don’t manifest themselves as divergent
out put canstill the detected we conjeet ure that au-
tonomous systems will often exhibit this fault-masking
behavior. The exceution is verified against t he specifica-
tion, both beecause we don’t have the tools to verify code
statically, andbecause it provides a concrete demonstra-
tion of quality.

Transition zones arc located and explored to Lake best
acvantage Or 1 niinted test resources: T'hat is where most
faults wilt occur. We propose (currently speculative)
techniques for locating the transition zones, and attempt
to quantify that state space reduction that canbe ex-
pected.

We firs(define autonomy, then provide some back-
ground information to justify its use. Anoutline tra-
ditional spacecraft test mcthods is provided. Weindi-
cate the shortcomings of these methods with respeet to
autonomous spacce raft systern, and finally we proposc a
comprchensive solut ion, covering technical anid manage-
rial issucs.

What is Aulonomy?

‘There is much room Lo argue the definition of autonomy.
Smithers|3] undertakes an extensive analysis of the many
definitions now inuse. We adopt the definition that dor i-
inates within the acrospace community, provided some
time ago by Turner at JI'L[4]:

Autonomy 'Theattribute of a systan to meet
mission performance requirements without ex-
ternal support for a specilied period of time.

The Webster definition 1s quite similar:

Autonomy
governing.

The quality or state of being self

hi the contemporary vernacular, the meaning of auton-
omy hasmoved away fromtihe application of cotiven-
tional control theory[5] Lo attitude cont rol, Lo an arcna
of Al and the focus of this paper: various applications of
on-board scarch and optimization|6], perhaps heuristic

minimize resource consumption, maximize scielee re-
turn, optimize a schiedule, determinet he root cause of a
failure where the environment has substantial influence
on the outcome of the algorithm. Though still a closed
loop control system in a general sense, the major mat h-
ematical basis of these systems is diserete optimization
(probably heuristic), rather than classical controltheory.

It is the mathemnatical nature of sucli discrete optimiza-
tion problems that they can be very sensitive Lo param-
clers in the sense that a seemingly small change in the

input can cause a large and “non-lincar™ ! difference in
the output. For examiple, a change in the length or time
of anevent of a fraction of a percent can cause a plarn-
ner algorithnm to ¢init a very different plan. We make
this distinction in order to stress the importance of state
exploration.

Why Aulonomy?

There are praginatic and t heoretical reasons Lo increase
on-board spacceralt autonomy.

The primary theoretical reason is light-time communica-
tions delay: Ground control of an operationthat requires
tight feedback is cither impossible (if real-tiiflc demands
can’the met) orineflicient. You earl’t “joy stick” a rover
on Mars like youcould if it were inyour backyard, nor
can ground cont rol respond to an on-board fault that
requires immediate response in order to prevent damage
to the mission.

Pragmatic concerns also center 011 cornmunication: it's
very expensive to communicate with a spacecraft in deep
space; yell’11 always want thore bandwidth than you can
get; and ground controllers are expensive. I follows that
autonomy will be used to improve science information
density, by doing on-board targeting and “culling”, and
by reducing down-time caused by fault recovery. Finally,
there arc vast opportunities to reduce costs and improve
safety if autonomy can be used to replace humans in
space .

Autonomy obviously becomes more important as e
reach farther into space, but can be profitably applied to
Isarth-orbit. military and commercial spaceerafl as well.
Antenna time and operations overhead can both be re-
duced.

2 I '’ ADITIONAL TESTING

‘Traditional system-level Lesting of spacecrafl software at,
JPL basically confirms that cach connmand works as ex-
pected; each requirement has been met; and that all se-
quences of conunands that will probably be used dur-
ing the mission work. T'his has been ‘effective because
spaccerafl soft ware has been designed to minimize sub-
systeminteractions and sensitivity to environmental cor-
cerns, so a feat ure, if it works at all, will probably always
work. This is the fundamental assutnption upon which
the soundness of the technique is based.

This technique assutnes that there is a way to tell if a se-
quence of comimands did indeed executle properly. Space-
craft flight soft ware usnally has a number of auditing
mechanisis that are used to confirm thatthe spacecraft
is opcrating properly during the mission. There are, for
exain ple, numerous counters that track the number of
times various events have occurred. These counters arc
made visible int he spacecraft telemetry, and are used to
check test results by comparing the various counter val-
ues with predicted vatues that also generated as a matter
of routine during the operation of the spacecraft.

I'Some call this behavior “chaotic”, We don’t, because we don’t
know if it meetls the formal criteria defining a chaotic system.

This technique dots not scale to autononomy-rich sys-
tems for tworeasons: Aulonon)ons systemstendtohave
miany more subsystem interactions; and they tend to he
more sensitive to the environment and current state of
the spaceeraft. Both of these greatly increase the con-
text sensitivity of comumands, and so tend Lo invalidate
the “if it works at all, it’ll always work” preniise. As a
result, the confidence gained per test goes down, so more
tests must be performed. But, the tests must vary the
environment and system state trajectory, which is fun-
damentally different thanwhat is now done. Al of these
things suggest that a new technique is required.

3 T'ESTING AUTONOMOUS
SOFTWARE

Why Autonomous Systemns are DifJcrent

Ultimately, our objective in testing is to improve the
expected science return, and so minimize the ineremental
cost of scicnce data. Science return earl become non-
optimal in many ways, including:

« 1.0ssof spacecraft.

« Missal targetting opportunity.

« Sill)-olytirtlal targetting.

« 1,0ss of acquired data.

e Missal downlink opportunity.

« Ineflicient use of downlink bandwidth.

« Inopcrable instrument.

o Inefficient use of spacecrafll, resources.

« Untimely change in spacecrafl configuration.

« Rendezvous or pointing mancuvers too complicated.

These risks arc present inall science spaceeralt. The in-
teresting thing about autonomous systems is that many
things that were traditionally under ground control and
were thus the responsibility of human controllers become
the responsibility of the autonomy syster n. ‘This must
lead to additional test obligations.

A major goal of the testing we advocate is to demon-
strate that the spacecraft is in some sense robust in the
face of “routine” failures, and that the antonomy com-
ponent in particular makes good use of resources in
other words, thatthe autonomy components work as in-
tended. We anticipate that our methods will not only
demonstrate the properties outlined above, it thicy are
present, but will also greatly aid inproviding the prop
ertics, by helping t he gqevelopers locate weaknesses in
the system so that they might be removed. Onee these
things are done, the testing has et its objective of in-
creasing expected science return.

Prem at ure spaceceraft failure is t he thiggest threat to
scicnee return in terms of 10ss potential, so a signif-
icant parl of autonomy sOfl ware tries Lo protect the
spaceeraft against on-board failures and self-dd ructive
commanding?. Unfortunately, since an autonomous sys-
tem by definition has (within design constraints, o f
course) subost antial cont rol over its own fate, it fol-
lows that the spacecraft is highly vulnerable to mistakes
within the antonomy design and implementation, and so
should be heavily exercised.

Il we sti pulate that the spacecraft cari’t he commanded
to cause itsell permanent harm, then the next biggest
threat to scienee data return is to command the space-
craft to do something of low science value. This could
ocenr, for exarnple, if a science request conflicted with
other pending requests, which would trigger on-board
conflict resolut ion and consequent suboptimal science re-
turn. 1t will therefore remain important that we have a
method of confirming that commands to the spacecraft
will provide good science return, even if maintenance of
spaceeralthealth is nolonger a concern.

There appear to be three things that inake autonomous
spaceceraft software “different” as compared to tradi-
tional mission-crit jcal flight systems: The technology is
more comnplicated and less mature; Autonomous systems
tend hy have more subsystem interactions; and autonomy
makes t hie spacecraft imore pereeptive of and sensitive to
itsell and its environment (Indeed, that’s the point of
autonomy!). Taken together these things constitute a
“quantum lea p”. Sound management practice dictates
thatone must carefully examine all assumptions when
such leaps occur.

The complexity of autonomy software, and the low ma-
turi Ly of autonomy technology in general, lead directly
to performance uncertainty: Given the state of software
devclopment technology today, you just don’t know what
the system is going to (lo untit youtry it. You know what
it’s supposcd to do, and whatit has so far been observed
to do, but that’s much different than having confidence
in its behavior under all likely mission scenarios. But
wit hout that confidence, you earl’t rational ly allow the
technology to controlthe fate of anexpensive spacecraft.

New Tesling Paradigm

One way (perhaps the only way) to provide confidence in
an aulonomous system today is (o exerci se the system
extensively via a large nuimber of sim ulated missions,
cacti proxunate in some sense to the nominal mission,
and conlirm the correct beha vior of the system over cach
mission®. Complexity is discussed further in the section
onh risk management.,

Figure 1 outlines the systemm we propose. 1n additiorn,

28pacecraflt have always had a powerful on-board fault pro-
tection capability. Modern autonomy enables greater fault cov-
crage and responses that are more likely to allow the mission to
progress without human involvement, and thus delay, in the recov-
Cry process.

3iven then, one is faced with the “abstraction problem™: The
sitnulation is an abstraction of the universe, and it can be difticult
Lo convinee people that one retained all essential features of the
universe in the abstraction. We've seen many lively discussions
corne of this situation,

nominal scenario Szeaario . .
+ tolerunces | Generator specific constraints
4 fuultinjections | e JTTTOTTTT H
1
1)
| —- 1
. .)
: detailed scenarios 1
' i
: Scenario H
| Iriver !
' (
] t
g 1
feedbact) {
1 commands b+ sir directive :
1
X t
: Mission 0
: Testbal :
. . ’
: (incl. Sim & h/w) /,/
' —— .
|) e
1 real time behavior L °
[} Pid
3 g
spevifications of Ny Behavior Dnscrepancy/
acceptublefeapected], Auditor _p]J)Toximity Report

behaviour

Figure 1: Overview of system

once must have a simulator of the spacceraft upon which
to exee ute the autonomous software, as well as a simu-
lation of the universe to stimulate the spacecraft sensors
and react with the actuators. lortunately, the High-
speed Spaceeraft Sitnlator{7] (115S) and Dynamics Al-
gorithms for Real-time Simulation (D ARTS) dynamics
simulator[8] have been available for sor ne time. One may
also wish toconsider exec uting the autonomy subsystem
within an abbreviated siimulator, so the simulations ex-
ccute more quickly. 1t might even be possible to design
the autonomy systemto work within a discrete event
simulation, so that many, very high performance “(quick
look” simulations can be performed. Most o f the time
there isn’t anything “interesting” happening insofar as
the autonomy subsystem is concerned. Such arms prob-
ably won’t be worth exploring indet ail. It would benice
to have a way of moving quickly over them.

Our technique is based upon this process:

Definethe nominal inission . 'The key to our approach
is the exceution of a large number of perturbations
of and “ncar” the nominal mission. This requires
that the nominal mission be formaltly? delined, and
that there is a way to express the bounds of plau-
sibility around the nominalmission. The issue here
isn’t just variance of trajectory andresource con-
sum ption, but, more interestingly, variance in the
timing and occurance of fault conditions. We have
done some preliminary (as yet unreported) work in
this arca,but as yecthave no solutionto offer.

Generale mulations of the mission. There are an effec-
tively infinite number of plausible mission state tra-
jectorics. How (1o we generate a subset hoth small

‘1 defined such that a automated analysis and manipulation is
praclical.

chough to simulate and that provides “good” cov-
crage? We believe that a combination of manual,
Monute Carlo, and feedback techniques will be neces-
sary. Manual miethods will be needed for the foresee-
able fut ure to cover arcas for which we have no algo-
rithmic approach. One nay, for example, have a list
of fault conditions that are particularly interesting
Lo certainpeople. Monte Carlo will he used to cover
spaces of more or less uniforin density, for exat n-
ple to model resource constmption not near b ound-
ary conditions, or dynamics during the cruise phase
of the mission, where nothing much interesting is
happening. Feedback techniques will be necessary
where the space is very large and non-uniform. or
exanmiple, scarchand optimizati on-based subsystems
(e.g. planners and schedulers) have regions where
theresponse s litlcar-like with respect to the stim-
ulus, and other regions where they are in transition
and have highly non-lincar responses. We speculate
t hatt he latter canbe located and stressed automat-
ically. Such regions will tend to be a rich source of
faults, and so should be paid particular attention.

St ula e ea ch inission. We cheek th at thie state trajee-

tory of anexecution of thesystem is a member of the
st of all correct trajectories {generated implicitly
using the formal specification of correct behavior of
the system). In this step of the process, a trajec-
tory is computed for a given mutation of the base-
line mission. "The mission may be exceuted upon a
spacecraft sirmulator, or even a breadboard of the
spacccrafl. Performance is important, though, so it
would be best 1o execute it on an abstract simulator
rat her t han the breadboard, unless one is especially
paranoid about abstraction.

Deter inine systemn bchaved correctly. Our method will

generate a tranendous amount, of data that must be
analyzed. There wor’t be time for manual insp ce-
tion, and many faults will probably be subtle, auto-
mal ically corrected by the system being tested, and
thus remain unnoticed anyway. A formal specifica-
tion of systembehavioris created, that reflects troth
t lack- t rox and whit ¢-box behaviors. The latt er,
though a bit untraditional for use during systen -
level t esting, will great ly inerease t he efliciency of
t het est's, because autonomous systems tend to con-
verge after minor faults, such that the fault may
not manifest itsell as an externally-visible failure.
I fowever, such behavior is not cause for celebra-
t ion: there was a fault, and under different circums-
stances it could become a big failure. Better to lo
cate and fix such problems on the ground, than to
discover them during flight! 1t is not casy to develop
such specifications[9]. We have done preliminary
work on a simple axiomatic system with temporal
capabilities called 1°aunrr(uup ublished) that can
quickly check a large volume of data against many
axioms, and 'I'sprc (unpublished) which provides
user-friendly construets thatare compiled into TAU-
DITbut arc generally much easier for non-logicians
to read and write. The temporal capability of TAU-
DLIE isn’t powerful enough to naturally express sotne
protocols, which is nonetheless necessary because

some behavior of autonomous systems is basically
manifested into interleaved protocols in the messag-
ing system. The challenge is to highlight for mar-
nal investigation miessages that cari’t be explained.
We've investigated the use of a variation of Aug-
m ented Transition Networks|1 0] and various state
machine notations[1 1] for that purpose, but have
not implemented anything.

Determin e pr oximity to failure. We would like to k now
not just that all of the tests were passed, thut by how
much. A 'TAUDIT specification contains a large num -
ber of predicates. It scems to us that it should be
possible to develop sotme notion of proximity to fail-
ure for cach predicate, at least in a heuristic scnsc.
This, in turn, could be used both to provide some
measure of confidence in the tested software, and
Lo drive Lhe testscenarios towards additional explo
ration of potentially weak arcas. This work has not
advanced beyond a fey lnchtime conversations, thut
does show promisc.

4 FORMAL SPECIFICATIONS

A formalspecification is a mathematically precise state-
ment of how the software is expected to hehavel|9]. Our
approach is not dependerit upo nthe particular notation
that is used, as long as it meets once criteriar We must be
ableto writeaprogramthat uses it tj¢orifirtlljet]y. that
a given state trajectory confortns to the specification.

Yor various theoretical and practical reasonsit is not pos-
sible to write a specification for most so ftware products
that can classify any state trajectory as cit her correct or
not correet. 1L is, however, quite practical to get very
close, and that is what we advocate.

We developed a formal notation called "1 "Aubir that
i s specifically designed to specify and test transition-
oricnted systems. 1t is based upon propositional logic,
but includes some temporal operators that aye proven
uscful in practice. Figure /reflig:taudit shows part of a
T'AuDIT specification for a Microprocessor, which should
give anidea of the notation (details are not important
at. this point).

Iissentially, each invariant is checked whenever any of
the variables upon which its value depends change in
value. If the invariant is false then a diagnostic inessage
is generated. The notation includes the usual arithmetic,
logical, and relational operators, aswell as user-}vrittct!
functions and the special operator “prev” to aceess the
previous value of an expression.

5 RISK MANAGEMENT

There is little published on testing, proving the correct-
ness of, or identifying the risk factors within, most of
the components of a contemporary autonomaous system
(planmers, schedulers, expert systems, scarch engines,
model-based fault detection/recovery algorithms). We
have, however, identified a number of standard manage-

funcdecl add8(_al, _a2)
(_al+_a2)¥%256;

funcdecl bv{_al)
(_a1)71:0;

funcdecl addcommon(_al,_a?2)
rA <- add8(prev(rA),_al)
& fCY <- bv((prev(rA)+_a1)>255)
& £S <- bv(add8(prev(rA),_al) > 127)
& £Z <- bv(add8(prev(rd),_al) = O
& fP <- bv(even_parity(add8(prev(rA)
& fAC <~ bv({prev(rA)%16+_al%16) > 16)
& nc(_a2,{rA},{});

,_al)))

#! ADD r 5-6
i nvariant ADDr op_nns (#b10000000) - >
addcommon (rSSS , 1);

Figure 2: "TAUDIY example

ment risk indicators possessed by a contemporary au -
tonormous systeni:

o 11's anunprecedented product.

it’s advanced software development.

o It’s arcal-time system.
e 11's ancembeddedsystent.

o IU’s camponents are tightly coupled.

1t st be of the highest quality.

It requires highly specialived software skills.

11’5 probably constrained by cost and schedule.

Taken together, these clearly indicate that management
rigor is required. Many of these indicators are called out
inBoctun{l2], which also discusses general software risk
mianaget nent and mitigation in some detail. 1t should
be read by anybody undertaking the management of a
signilicant software project. Others have 1X° (11 demon-
strated to extend software develop ment schedules, as evi-
denced in somie of the COCOMO[13] sehedule/workforee
catimat or cocflicien ts. JP1 has published a good lessons-
learned[14] thatcaine o f the development of an au-
tonotmous spaceerafl systemn, as has ESA[2]. Both will
be uscfulto anybody undertaking a similar development
cffort.

6 SUMMARY

We nust demonstrate the robustness of autonomous
spacecraft before it makes sense to base the success of a
mission upon such a system. Autonomy introduces fac-
tors that tend to invalida te tradition al spacecraft system
test mcethods, so we need new methods that will be ef-
fective when applied to newer spaceerafl soltware. We

propose a method based upon the exceution of a large
number of mutations of a nominal mission scenario and
the use of automated analysis of white-box Lest results,
using formal specifications of expected behavior.

The introduction of autonomy to spacecralt systans also
introduces software devclopmient risk indicators cither
attenuated or not present in “traditio nal” flight so fiware,
which must be managed if a successful product is to he
built.

REFERENCES

[1] s. Hedberg. Al Coming of Age: NASA uses Al
for At ttonorious Space Pxploration t. 11IE Fapert,
pages 13 15, June 1997.

[2] W. Wimmer, 1. Ferri, and H. Hubner. On-
board Autonomy, EURECA Experichee and Re-
quirements for Future Space Missions. Gonlrol Iin-
gineering Practice, 41 2):1715 172~), 19)6.

[3] T. Smithers. Autonomy in Robots and Other
Agents. Brain and Cognition, 34(1):88 106, Jure
1997.

[P.R. Turner. Autonorn 1y and Automation for Space
Station 1lousckeeping and Maintenance Functions.
Journal of Ingin ecring for Induslry, 1 07(1):39 42,
Iebruary 1985.

5] .. Antsaklis. On Autonomy and Intelligence
inCortrol. IEEE Con trol Systems Magazin c,
14(3):61- 62, 1994.

6] D.1 Bernard et al. Design of the Remote Agent
Experirnent for Spacecraft. Autonorny. 1 nlisisle
A crospace Conferen ce Iroceedings, Aspei, (k).
March 1998, Subimnitted to.

[T A. Morrissct t et al. Multimission High Speed Space-
craft Simulation For The Galilco and Cassini Mis-
sions. L n ATA A Compu ling in A crospace Confercn ce
9th, s071 Diego, CA, Oclober 19-221, 1993. American
Institute of Acronautics and Astronautics, October
1993.

[8] 3 . Bicsiadecki, A . Jain, and M.IL. James. Ad-
vanced Siimulation invironment. for Auitonon ous
Spaceccraft. 1 n In lerna tional Symposium on Arlifi
cial Intelligence Robotics and Aulomalion in Space
(i-SATRASY7), Tokyo, Japan, July 1997.

[Formal Methods Specification and Analysis Guide-
book for the Verification of Softare and Comn-
puter Systems. Technical Report NASA-C 31-001
97, NASA Office of Safety and Mission Assurance,
1997.

[10] W. A. Woods. ransition network grammars for
naturallanguage analysis. Communications of the
ACM,13(10):591606, October 1970,

[11] 1). Ttarcland A. Naawmad. The statemate semantics
of statecharts. A CM Transactions on Soft ware I -
gineering and Methodology, 5(1):293 333, October
1996.

[12] B.W. Bochm. Software risk managoement: Princi-
plesand practices. 111210 Software, 8(1):32 41, Jan-
uary 1991

(13] 11 \\'. 13ochmi. Saftware Fngin cering Feonomics.
Prentice Hall.

[14] AS. Aljabri, 1).1,. Dvorak, G. K. Man,and T. W,
Starbird. Infusion of Autonomy Technologies Into
Space Missions - DS 1 «essons 1 .carned. In IRIE
A ¢ ospa ce Conferen ce Proceedings, As pen , Co.,
March 1998. Submitted to.

FLO30 Ve rnodon 1,12 Decent 01 2,1997

